Rice University

Events at Rice

Thesis Defense

Graduate and Postdoctoral Studies
Mathematics

Speaker: JungHwan Park
Doctoral Candidate

Derivatives of genus one and three knots

Tuesday, April 11, 2017
2:30 PM  to 4:00 PM

301  Sewall Hall


A derivative L of an algebraically slice knot K is an oriented link disjointly embedded in a Seifert surface of K such that its homology class forms a basis for a metabolizer H of K. For genus one knots, we produce a new example of a smoothly slice knot with non-slice derivatives. Such examples were first discovered by Cochran and Davis. In order to do so, we define an operation on a homology B^4 that we call an n-twist annulus modification. Further, we give a new construction of smoothly slice knots and exotically slice knots via n-twist annulus modifications. For genus three knots, we show that the set of possible Milnor's triple linking number associated to a metabolizer H contains nZ, where n is an integer determined by a Seifert form of K and a metabolizer H. As a corollary, we show that it is possible to realize any integer as the Milnor's triple linking number of a derivative of the unknot on a fixed Seifert surface and with a fixed metabolizer.

<<   April 2017   >>
S M T W T F S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

Search for Events


Quicklinks